Crystal Structure

Communications

ISSN 0108-2701

Chlorodimethyl(N-methylpyrrolidinone)tin(IV)- μ-chloro-dichlorodimethyltin(IV)

Uwe-Christoph König et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

[^0]Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Chlorodimethyl(N-methylpyrrolidin-one)tin(IV)- μ-chloro-dichlorodimethyltin(IV)

Uwe-Christoph König, Michael Berkei, Claudia Hirsch, Hans Preut* and Terence Nigel Mitchell

Fachbereich Chemie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
Correspondence e-mail: uch002@uxp1.hrz.uni-dortmund.de

Received 16 August 2000

Accepted 30 August 2000

Data validation number: IUC0000236
The synthesis and the X-ray structural analysis of the title compound, $\quad \mu$-chloro-1:2 $\kappa^{2} \mathrm{Cl}$-trichloro- $1 \kappa \mathrm{Kl}, 2 \kappa^{2} \mathrm{Cl}$-tetra-methyl-1 $\kappa^{2} C, 2 \kappa^{2} C$-(N-methylpyrrolidin- 2 -one)- $1 \kappa O$-ditin(IV), $\left[\mathrm{Sn}_{2} \mathrm{Cl}_{4}\left(\mathrm{CH}_{3}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}\right)\right]$, are described. The title compound is found to exhibit a distorted trigonal-bipyramidal geometry at both $\mathrm{Sn}^{\text {IV }}$ atoms. The $\mathrm{Sn}-\mathrm{Cl}-\mathrm{Sn}$ angle involving the bridging chlorine ligand is $135.56(5)^{\circ}$, with the $\mathrm{Sn}-\mathrm{Cl}$ bond lengths being 2.5704 (13) and 3.1159 (13) \AA.

Comment

One of the most interesting topics in structural organotin chemistry is the exhibition of pentacoordination at the Sn atom. The complexation of organotin compounds with N methylpyrrolidinone (NMP) is well established. Articles describing molecular complexes derived from 1:1 and 1:2 complexation of dimethyltin dihalides by NMP have been published (König et al., 2000a,b). A 2:1 complexation of dimethyltin dichloride by NMP should help in the investigation of whether NMP is able to react as a bidentate ligand, which would lead to two different pentacoordinated dimethyltin dihalide adducts. The results show that, as predicted, NMP belongs to the group of monodentate ligands. Nevertheless, there are two pentacoordinated Sn atoms (Sn 1 and Sn 2) in the crystal of the title compound, (I). Both exhibit a distorted trigonal-bipyramidal geometry.

Atom Sn 2 has Cl 4 and NMP as apical ligands with an angle of $177.35(7)^{\circ}$ close to the ideal angle of 180°. The deviation from ideal geometry is illustrated more clearly by the widened C3-Sn2-C4 angle of 146.29 (17) ${ }^{\circ}$ and by the narrowed C3$\mathrm{Sn} 2-\mathrm{Cl} 3$ and $\mathrm{C} 4-\mathrm{Sn} 2-\mathrm{Cl} 3$ angles of 106.58 (11) and $106.37(13)^{\circ}$, respectively, compared with a value of 120° for an ideal angle in the equatorial plane. This plane contains two methyl groups and one chlorine. These ligands are somewhat displaced towards the axial NMP ligand. This becomes obvious on comparing the values of the angles between the
equatorial and axial ligands: (a) C3-Sn2-O1 89.91 (14) ${ }^{\circ}$, C4-Sn2-O1 83.59 (15) ${ }^{\circ}$, O1-Sn2-Cl3 89.24 (8) ${ }^{\circ}$; (b) C3-Sn2-Cl4 91.98 (12) ${ }^{\circ}$, $\mathrm{C} 4-\mathrm{Sn} 2-\mathrm{Cl} 43.81(14)^{\circ}, \mathrm{Cl} 3-\mathrm{Sn} 2-$ $\mathrm{Cl} 492.00(5)^{\circ}$. The $\mathrm{Sn}-\mathrm{O}$ bond length in this compound [2.278 (3) \AA] is shorter than in other pentacoordinated tin complexes (Dey et al., 1999; Cunningham et al., 1993). The two $\mathrm{Sn} 2-\mathrm{Cl}$ bond lengths differ; $\mathrm{Sn} 2-\mathrm{Cl} 32.3777$ (13) \AA and $\mathrm{Sn} 2-\mathrm{Cl} 42.5704(13) \AA$. The $\mathrm{Sn}-\mathrm{Cl}$ bond in the equatorial plane is a little longer than in known pentacoordinated tin complexes (Dey et al., 1999; Cunningham et al., 1993; Einstein \& Penfold, 1968). The long axial $\mathrm{Sn}-\mathrm{Cl}$ bond may be due to its bridging character, similar features having been observed in the structure of the anion of $\left[\mathrm{Me}_{2} \mathrm{SnCl}(\text { terpy })\right]^{+}\left[\mathrm{Me}_{2} \mathrm{SnCl}_{3}\right]^{-}$ (Einstein \& Penfold, 1968). The values of the bond lengths and bond angles in the NMP ligand are comparable with those observed in other NMP coordinated organometallic compounds (Churchill \& Rotella, 1979) and in free NMP (Müller et al., 1996)

(I)

The other part of the complex also exhibits a distorted trigonal-bipyramidal coordination geometry around tin. Atom Sn 1 has Cl1 and Cl4 as apical ligands with an angle of 175.67 (4) ${ }^{\circ}$ close to the ideal angle of 180°. The deviation from ideal geometry is demonstrated most clearly by the widened $\mathrm{C} 2-\mathrm{Sn} 1-\mathrm{C} 1$ angle of $142.33(17)^{\circ}$ and by the narrowed $\mathrm{C} 1-$ $\mathrm{Sn} 1-\mathrm{Cl} 2$ and $\mathrm{C} 2-\mathrm{Sn} 2-\mathrm{Cl} 2$ angles of 103.99 (12) and $105.64(11)^{\circ}$, respectively, compared with a value of 120° for an ideal angle in the equatorial plane. This plane also consists of two methyl groups and one chlorine. The ligands are displaced towards the axial Cl4 ligand. This becomes evident when the angles between the axial and equatorial ligands are compared: (a) $\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{Cl} 482.82$ (12) ${ }^{\circ}, \quad \mathrm{C} 2-\mathrm{Sn} 1-\mathrm{Cl} 4$ $76.30(12)^{\circ}, \quad \mathrm{Cl} 2-\mathrm{Sn} 1-\mathrm{Cl} 486.58(5)^{\circ}$; (b) $\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{Cl} 1$ $100.18(12)^{\circ}, \quad \mathrm{C} 2-\mathrm{Sn} 1-\mathrm{Cl} 1 \quad 99.50(12)^{\circ}, \quad \mathrm{Cl} 2-\mathrm{Sn} 1-\mathrm{Cl} 1$ $95.67(5)^{\circ}$. There are three $\mathrm{Sn}-\mathrm{Cl}$ bonds in this part of the complex represented by the following values: (a) $\mathrm{Sn} 1-\mathrm{Cl} 1$ 2.4197 (12) Å, (b) Sn1-Cl2 2.3702 (13) \AA, and (c) Sn1-Cl4 3.1159 (13) \AA. As in the part of the complex described above, the bond between tin and the chlorine in the equatorial plane is a little longer than in known pentacoordinated tin complexes (Dey et al., 1999; Cunningham et al., 1993; Einstein \& Penfold, 1968). On the other hand, the $\mathrm{Sn}-\mathrm{Cl} 1$ bond is only a little longer than the $\mathrm{Sn}-\mathrm{Cl} 2$ bond and therefore short.

Also, the bond between Sn 1 and the bridging chlorine Cl 4 is short compared with other complexes containing bridging Cl ligands such as $\mathrm{Me}_{3} \mathrm{SnCl}$ (Hossain et al., 1979) and $\mathrm{Me}_{2} \mathrm{SnCl}_{2}$ (Davies et al., 1970).

Experimental

The title compound was prepared by the reaction of N-methylpyrrolidinone ($0.71 \mathrm{~g}, 0.69 \mathrm{ml}, 7.3 \mathrm{mmol}$) with freshly sublimed dichlorodimethylstannane $(3.20 \mathrm{~g}, \quad 14.6 \mathrm{mmol})$ derived from the reaction of dimethyltin oxide with HCl (Pfeiffer, 1902) in 10 ml of dry diethyl ether. The reaction mixture was stirred for 30 min and afterwards stored in a refrigerator at 278 K . Colourless crystals are obtained in quantitative yield after filtration and drying in vacuo (m.p. 329 K). A solution of the complex (80 mg) in $\mathrm{C}_{6} \mathrm{D}_{6}(470 \mathrm{mg})$ gives the following values for the structure-relevant NMR parameters: ${ }^{2} J\left({ }^{119} \mathrm{Sn},{ }^{1} \mathrm{H}\right)=79 \mathrm{~Hz},{ }^{1} J\left({ }^{119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=590 \mathrm{~Hz}$ and $d\left({ }^{119} \mathrm{Sn}\right)=$ 30.1 p.p.m.

Crystal data

$\left[\mathrm{Sn}_{2} \mathrm{Cl}_{4}\left(\mathrm{CH}_{3}\right)_{4}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}\right)\right]$
$M_{r}=538.45$
Triclinic, $P \overline{1}$
$a=7.3650$ (15) \AA
$b=10.311$ (2) \AA
$c=12.311$ (3) \AA
$\alpha=78.45$ (3) ${ }^{\circ}$
$\beta=84.36(3)^{\circ}$
$\gamma=84.38(3)^{\circ}$
$V=908.6(3) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.968 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5442 \\
& \quad \text { reflections } \\
& \theta=2.38-27.06^{\circ} \\
& \mu=3.324 \mathrm{~mm}^{-1} \\
& T=173(2) \mathrm{K} \\
& \text { Parallelepiped, colourless } \\
& 0.10 \times 0.08 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer
Method: 278 frames via ω-rotation ($\Delta \omega=1^{\circ}$) at different κ values and two times 25 s per frame
5442 measured reflections
3557 independent reflections
2466 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.063$
$S=0.804$
3557 reflections
159 parameters

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Sn} 2-\mathrm{C} 3$	$2.100(4)$	$\mathrm{Sn} 1-\mathrm{C} 2$	$2.100(4)$
$\mathrm{Sn} 2-\mathrm{C} 4$	$2.103(4)$	$\mathrm{Sn} 1-\mathrm{C} 1$	$2.109(4)$
$\mathrm{Sn} 2-\mathrm{O} 1$	$2.278(3)$	$\mathrm{Sn} 1-\mathrm{Cl} 1$	$2.4197(12)$
$\mathrm{Sn} 2-\mathrm{Cl} 3$	$2.3777(13)$	$\mathrm{Sn} 1-\mathrm{Cl} 4$	$3.1159(13)$
$\mathrm{Sn} 2-\mathrm{Cl} 4$	$2.5704(13)$		
$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{C} 4$	$146.29(17)$	$\mathrm{Cl} 3-\mathrm{Sn} 2-\mathrm{Cl} 4$	$92.00(5)$
$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{O} 1$	$89.91(14)$	$\mathrm{C} 2-\mathrm{Sn} 1-\mathrm{C} 1$	$142.33(17)$
$\mathrm{C} 4-\mathrm{Sn} 2-\mathrm{O} 1$	$83.59(15)$	$\mathrm{C} 2-\mathrm{Sn} 1-\mathrm{Cl} 2$	$105.64(11)$
$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{Cl} 3$	$106.58(11)$	$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{Cl} 2$	$103.99(12)$
$\mathrm{C} 4-\mathrm{Sn} 2-\mathrm{Cl} 3$	$106.37(13)$	$\mathrm{C} 2-\mathrm{Sn} 1-\mathrm{Cl} 1$	$99.50(12)$
$\mathrm{O} 1-\mathrm{Sn} 2-\mathrm{Cl} 3$	$89.24(8)$	$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{Cl} 1$	$100.18(12)$
$\mathrm{C} 3-\mathrm{Sn} 2-\mathrm{Cl} 4$	$91.98(12)$	$\mathrm{Cl} 2-\mathrm{Sn} 1-\mathrm{Cl} 1$	$95.67(5)$
$\mathrm{C} 4-\mathrm{Sn} 2-\mathrm{Cl} 4$	$93.81(14)$	$\mathrm{Sn} 1-\mathrm{Cl} 4-\mathrm{Sn} 2$	$135.56(5)$
$\mathrm{O} 1-\mathrm{Sn} 2-\mathrm{Cl} 4$	$177.35(7)$		

The H atoms were placed in calculated positions with $U_{\text {iso }}$ constrained to be $1.2 U_{\mathrm{eq}}$ of the carrier atom.

Data collection: COLLECT (Nonius, 1998); cell refinement and data reduction: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve and refine structure: SHELXS97 (Sheldrick, 1990) and SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995).

We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support.

References

Churchill, M. R. \& Rotella, F. J. (1979). Inorg. Chem. 18, 853-860.
Cunningham, D., Gallagher, J. F., Higgins, T., McArdle, P., McGinley, J. \& O’Gara, M. (1993). J. Chem. Soc. Dalton Trans. pp. 2183-2190.
Davies, A. G., Milledge, H. J., Puxley, D. C. \& Smith, P. J. (1970). J. Chem. Soc. A, pp. 2862-2866.
Dey, D. K., Das, M. K., Chinnakali, K., Fun, H.-K. \& Razak, I. A. (1999). Acta Cryst. C55, 20-22.
Einstein, F. W. B. \& Penfold, B. R. (1968). J. Chem. Soc. A, pp. 3019-3024.
Hossain, M. B., Lefferts, J. L., Molloy, K. C., Van der Helm, D. \& Zuckerman, J. J. (1979). Inorg. Chim. Acta, 36, L409-410.

König, U.-C., Berkei, M., Neikes, F., Preut, H. \& Mitchell, T. N. (2000a). Acta Cryst. C56, e53-54.
König, U.-C., Berkei, M., Neikes, F., Preut, H. \& Mitchell, T. N. (2000b). Acta Cryst. C56, 324-326.
Müller, G., Lutz, M. \& Harder S. (1996). Acta Cryst. B52, 1014-1022.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nonius (1998). COLLECT. Nonius BV, Delft, The Nethelands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Pfeiffer, P. (1902). Chem. Ber. 35, 3303-3307.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

